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The problems here will likely take much longer to solve than a single 50-minute lecture block.
I recommend trying out the first two problems, which are relatively straightforward, and then at
least reading through Problems 3 and 4, which are much more involved. Of course, I recommend
working through these problems at your own pace afterwards; they are very illuminating!

Problem 1: Additivity of relative entropy

Show that D(ρA ⊗ χB ‖σA ⊗ τB) = D(ρA ‖σA) +D(χB ‖ τB). You can assume that σA and τB
are full-rank (no zero eigenvalues) to avoid divergences in relative entropy.

Note: If we think of D as a measure of distinguishability, then the result above is clear. The
uncorrelated states in B cannot influence the distinguishability of the states of A and vice-versa.
This could also be viewed as a special case of monotonicity of relative entropy, D(ρAB ‖σAB) ≥
D(ρA ‖σA).

Problem 2: Operator-sums are quantum channels

Let HA and HB be Hilbert spaces with dimHA = dA and dimHB = dB. Consider the linear
map N : L(HA)→ L(HB) whose action is

N (XA) =
d∑

j=1

NjXAN
†
j , (1)

where d ≤ dAdB and, for each 1 ≤ j ≤ d, Nj : HA → HB and
∑d

j=1N
†
jNj = IA. Show that N

is completely positive and trace-preserving.

Problem 3: Distance measures

Adapted from Exercise 2.7 of J. Preskill, Lecture Notes for Ph219/CS219: Quantum Information
and Computation, Chapter 2 (2013 edition).

In many cases, we would like to be able to meaningfully quantify how “close” two quantum
states are to each other. For example, if we are trying to correct errors made during a quantum
computation, we would like to quantify how close the post-recovery state is to the original state.
In this problem, we will see why the 1-norm is a good measure of closeness.
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Consider two quantum states described by density operators ρ and ρ̃ in a N -dimensional
Hilbert space, and consider the complete orthogonal measurement {Ea : a = 1, 2, . . . , N}, where
the Ea’s are one-dimensional projectors satisfying

N∑
a=1

Ea = I. (2)

When the measurement is performed, outcome a occurs with probability pa = Tr ρEa if the
state is ρ and with probability p̃a = Tr ρ̃Ea if the state is ρ̃.

The (normalized) L1 distance between the two probability distributions is defined as

d(p, p̃) ≡ ‖p− p̃‖1 ≡
1

2

N∑
a=1

|pa − p̃a|. (3)

This distance is zero if the two distributions are identical, and attains its maximum value of
one if the two distributions have support on disjoint sets.

a) Show that

d(p, p̃) ≤ 1

2

N∑
i=1

|λi|, (4)

where the λi’s are the eigenvalues of the Hermitian operator ρ− ρ̃. Hint: Working in the basis
in which ρ − ρ̃ is diagonal, find an expression for |pa − p̃a|, and then find an upper bound on
|pa − p̃a|. Finally, use the completeness property Eq. (2) to bound d(p, p̃).

b) Find a choice for the orthogonal projectors {Ea} that saturates the upper bound Eq. (4).

Define a distance d(ρ, ρ̃) between density operators as the maximal L1 distance between the
corresponding probability distributions that can be achieved by any orthogonal measurement.
From the results of (a) and (b), we have found that

d(ρ, ρ̃) =
1

2

N∑
i=1

|λi|. (5)

c) The trace norm, or Schatten 1-norm ‖A‖1 of an operator A is defined as

‖A‖1 ≡ Tr
[
(A†A)1/2

]
. (6)

How can the distance d(ρ, ρ̃) be expressed as the 1-norm of an operator?

Now suppose that the states ρ and ρ̃ are pure states ρ = |ψ〉〈ψ| and ρ̃ = |ψ̃〉〈ψ̃|. If we adopt
a suitable basis in the space spanned by the two vectors, and appropriate phase conventions,
then these vectors can be expressed as

|ψ〉 =

(
cos θ/2
sin θ/2

)
|ψ̃〉 =

(
sin θ/2
cos θ/2

)
. (7)

d) Express the distance d(ρ, ρ̃) in terms of the angle θ.
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e) Express ‖|ψ〉 − |ψ̃〉‖2 (where ‖ · ‖ denotes the Hilbert space norm, i.e., the 2-norm ‖|ψ〉‖ =√
〈ψ|ψ〉) in terms of θ, and by comparing with the results of (d), derive the bound

d(|ψ〉〈ψ|, |ψ̃〉〈ψ̃|) ≤ ‖|ψ〉 − |ψ̃〉‖. (8)

f) Why is ‖|ψ〉 − |ψ̃〉‖ not a good measure of the distinguishability of the pure quantum states
ρ and ρ̃? Hint: Remember that quantum states are rays.

Problem 4: Positivity of relative entropy

Adapted from Exercise 10.1 of J. Preskill, Lecture Notes for Ph219/CS219: Quantum Informa-
tion and Computation, Chapter 10 (2018 edition).

a) Show that log x ≤ x− 1 for all positive real numbers, with equality if and only if x = 1.

b) The classical relative entropy of a probability distribution {p(x)} relative to {q(x)} is defined
as

H(p ‖ q) =
∑
x

p(x) (log p(x)− log q(x)) , (9)

for distributions such that p(x) = 0 if q(x) = 0, and where the sum is over x such that q(x) 6= 0.
Show that

H(p ‖ q) ≥ 0, (10)

with equality if and only if the distributions are identical. (Hint: apply the inequality from (a)
to log(q(x)/p(x)).)

c) The quantum relative entropy of the density operator ρ with respect to σ is

D(ρ ‖σ) = Tr [ρ log ρ− ρ log σ] , (11)

and it is well-defined provided ker σ ⊆ ker ρ. Let {pi} denote the eigenvalues of ρ and {qa}
denote the eigenvalues of σ. Show that

D(ρ ‖σ) =
∑
i

pi

(
log pi −

∑
a

Dia log qa

)
, (12)

where Dia is a doubly stochastic matrix. Express Dia in terms of the eigenstates of ρ and σ.
(A matrix is doubly stochastic if its entries are nonnegative real numbers, where each row and
each column sums to one.)

d) Show that if Dia is doubly stochastic, then (for each i)

log

(∑
a

Diaqa

)
≥
∑
a

Dia log qa, (13)

with equality only if Dia = 1 for some a.

e) Show that
D(ρ ‖σ) ≥ H(p ‖r), (14)

where ri =
∑

aDiaqa.

f) Show that D(ρ ‖σ) ≥ 0, with equality if and only if ρ = σ.
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